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ABSTRACT 
 

A novel optimization algorithm named teaching-learning-based optimization (TLBO) 

algorithm and its implementation procedure were presented in this paper. TLBO is a meta-

heuristic method, which simulates the phenomenon in classes. TLBO has two phases: teacher 

phase and learner phase. Students learn from teachers in teacher phases and obtain knowledge 

by mutual learning in learner phase. The suitability of TLBO for size and geometry 

optimization of structures in structural optimal design was tested by three truss examples. 

Meanwhile, these examples were used as benchmark structures to explore the effectiveness 

and robustness of TLBO. The results were compared with those of other algorithms. It is found 

that TLBO has advantages over other optimal algorithms in convergence rate and accuracy 

when the number of variables is the same. It is much desired for TLBO to be applied to the 

tasks of optimal design of engineering structures. 
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1. INTRODUCTION 
 

Structural optimal design has always been a concern for engineers in practice. The focus is not 

only in construction cost, but also in geometry of structures. It is responsible for engineers to 

design structures with high reliability and low cost. For these purposes, Many optimal 
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algorithms were investigated to accomplish the tasks including the classical methods and the 

innovative algorithms. 

In the early 1990s, the genetic algorithm was presented by Goldberg [1], then, it was made 

significant achievements in structural optimization fields [2-5]. After that, more attentions 

were paid by researchers to meta-heuristic optimization algorithms. Tremendous amount of 

meta-heuristic optimization algorithms were created and used in structural optimization tasks 

soon afterwards. Teaching-learning-based optimizer (TLBO) is a recently proposed meta-

heuristic algorithm [6-8]. The easy and effectiveness of TLBO were supported by research 

works of many other researchers published [9-12]. In the problem of size and geometry 

optimization of truss structures, the cross-sectional area and the geometry of primary structures 

both increase the dimension of the design space. It has been proved that TLBO algorithm 

performs well in problems with large dimensions [7-13]. The main work introduced in this 

paper is about verifing the optimization capability of the TLBO in truss structures. 

 

 

2. TEACHING-LEARNING-BASED OPTIMIZATION 
 

TLBO is a population based algorithm similar to the ant colony optimizer (ACO) proposed by 

Dorigo et al [14] , harmony search (HS) developed by Geem et al [15] and particle swarm 

optimizer (PSO) created by Kennedy et al [16]. It simulates the teaching-learning process 

proceeded in classroom. Students in class constitute the population in TLBO. The different 

subjects offered to students are considered as different constrains and the students' marks are 

analogous to the 'fitness'. Teacher, who obtains the highest marks among students, will do 

his/her best to increase the average marks of students according to his or her capability. The 

process of TLBO is divided into two parts. The first part is 'Teacher Phase' and the second part 

is 'Learner Phase'. The 'Teacher Phase' means learning from the teacher and the 'Learner Phase' 

means learning through the interaction between learners. The following section briefly 

describe about the implementation of TLBO in trusses. The notations used for describing the 

TLBO are as following: 

n: number of learners in class (i.e., class size); 

m: dimension of a learner; 

ps: population which has a matrix size of n rows and m columns. Each row represents a 

feasible solution (i.e., a learner) 

 (1) First, the population ps was randomly generated in constrained spaces, then the results 

W(x) (x = 1, 2, 3, …, n) were calculated according to the objective. The results were sorted in 

ascending order corresponding to ps (ascending order is convenient for finding minimum 

value, maximum value can be obtained by multiply by -1 before the objective). 
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where (1) (2) ( 1) ( )W W W n W n   … . Assume  1 1 1 1
1 2 m

A A A A .
1

A  is considered as a 

teacher. 

 (2) In teacher phase. The mean parameter is given as: 

 

 
1 2

{ ( ) ( ) ( )}
1 1 1

mean i i i
m

n n n
A mean A mean A mean A

i i i
   

  
 (2) 

 

 The teacher improves the average score of the whole class 
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where ri  is the random number in the range [0,1]. FT  is decided randomly with equal 

probability as: 
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 (3) In learner phase. A learner interacts randomly with other learners for enhancing his or 

her knowledge. Randomly select two learners
i

A and
j

A ( i j ). 
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A A  

 (4) The duplicate solutions is modified in order to avoid trapping in the local optima. 

Duplicate solutions are modified by mutation on randomly selected dimensions of the 

duplicate solutions before executing the next interation. 

 (5) Sort the results in ascending order corresponding to ps. Repeat process (2) to (4) until 

the termination condition is fulfilled. 

 More details of TLBO can be refereed in literatures [6] to [8]. 

 

 

3. MATHEMATICAL MODEL FOR SIZING AND GEOMETRY 

OPTIMIZATION OF TRUSS 
 

Usually, there are two types of variables in the mathematical model for the size and geometry 

optimization of the truss structures i.e. the cross-sectional area variables and the node 

coordinate variables, which determine the geometry of the structures. Compared with the truss 

size optimization problems which have been extensively studied, the size and geometry 
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optimization introduces node coordinate variables. This not only makes the design space is of 

higher dimension, but also greatly enhances the degree of nonlinearity, moreover, the 

optimization may lead to a local optima. The mathematical model of size and geometry 

optimization problems can be expressed as follows: 
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where k is the total number of truss elements; M is the number of nodes; N is the number of 

nodal freedoms; Ai , Li  and ρi represents the cross-sectional area, the length and the density of 

the ith bar respectively; Cj represents the coordination of jth node; gi
σ 
and gjl

u 
are the constraint 

violations for member stress (include buckling stress) and joint displacements of the structure. 

σi is the stress of the ith bar due to loading condition, [σi] is its allowable stress. ujl is the nodal 

displacement of the lth translational degree of the jth node, [ujl] is its allowable joint 

displacements. S is a set of discrete cross-section of bars. 

 

 

4. NUMERICAL EXAMPLES  
 

In this section, three pin-connected structures used in literatures were selected as benchmark 

structures to test the TLBO. Thirty independent runs were carried out for each design 

examples. The best result, the worst result, the number of structural analyses, the average 

result and the standard deviation (std. dev) of 30 independent runs are presented. The same 

terminal conditions were used in TLBO in this article for the convenience of comparing with 

literatures. That is, TLBO is terminated when times of structural analyses reaches 50000. 

However, the exact number of structural analyses is difficult to know, as the duplicate 

solutions are randomly modified in the duplicate elimination step of the TLBO. The total 

number of structural analyses in the TLBO algorithm is refered as ((2 × population × number 

of interations)＋(structural analyses required for duplicate elimination)) [17].  

 The TLBO is coded in Matlab 2008b and implemented on a desktop computer having Intel 

Core 3.20GHz processor with 3.47GB RAM. 

 All examples are analyzed by the finite element method (FEM). The constraints are 

handled by using ‘fly-back mechanism’ created by He et al. [18], the method can briefly 

describe if infeasible designs exist, then it will be forced to fly back to the previous position to 

guarantee a feasible solution. The efficiency of the method was previously verified for 

optimization of truss structures [19]. 

 The groups search optimizer (GSO) [20] and the heuristic particle swarm optimizer 
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(HPSO)  [21] are applied to compare with the new algorithm presented in this paper. For these 

two algorithms, the number of structural analyses is limited to 50000 and the population size is 

set to at 50. For the GSO algorithm, 20% of the population were selected as rangers; the initial 

head angle φ0 of each individual is set to be π/4. The constant a is given by round 1n   . The 

maximum pursuit angle θmax is π/a
2
 . The maximum turning angle α is set to be π/2α

2
 . For the 

HPSO algorithm, the inertia weight ω decrease linearly from 0.9 to 0.4, and the value of 

acceleration constants c1 and c2 are set to be the same and equal to 0.8. The passive 

congregation coefficient c3 is given as 0.6, the maximum velocity is set as the difference 

between the upper bound and the lower bound of variables. More details about the GSO can be 

found in [22]. 

 

4.1. A 40-bar planar truss structure 

The 40-bar planar truss is shown in Figure 1. The material density is 7800 kg/m
3
 and the 

modulus of elasticity is 196.13GPa. The stress limits of the members are subjected to 

±156.91MPa. Node 4 and 5 are subjected to the displacement limits of ±0.035m (1/600 span) 

in y directions. There are 40 members, which fall into 19 groups, as follows: (A1) 1, 7; (A2) 2, 

6; (A3) 3, 5; (A4) 4; (A5) 8, 14; (A6) 9, 13; (A7) 10, 12; (A8) 8; (A9) 15, 12; (A10) 16, 21; (A11) 

17, 20; (A12) 18, 19; (A13) 23, 36; (A14) 24, 35; (A15) 25, 34; (A16) 26, 33; (A17) 30, 29; (A18) 

31, 28; (A19) 32, 27.  

 Discrete values considered for this example are taken from the set D=[0.001, 0.05] (m
2
) and 

the interval is 0.001 m
2
. With the symmetry, the geometry variables group and side constraints 

are given as, 1≤ y9 = y1 6≤ 5, 1 ≤ y10 = y15 ≤5, 1 ≤ y11 = y14 ≤ 5, 1 ≤ y12 = y13 ≤ 5 (m). Node 2, 3, 

4, 5, 6 and 7 are acted by P, 10t in y direction. The optimal weight of 40-bar truss under 30 

indenpendent runs for different population is shown in Table 1. The best results of TLBO for 

population size 20 were selected to compare with those of other algorithms and were shown in 

Table 2. 
 

 
Figure1. A 40-bar planar truss 

 

Table 1: Results of sensitivity analysis of 40-bar truss for 30 independent runs 

PS 
Number of structural 

analyses averaged 

Number of best result 

for structural analyses 
Best (kg) Mean (kg) Worst (kg) std. dev 

20 50018 50008 2058.805 2200.081 2301.954 53.314 

30 50030 50032 2067.641 2272.684 2363.284 93.464 

40 50044 50076 2058.805 2219.201 2288.156 75.725 

50 50054 50092 2088.306 2228.173 2371.685 88.011 
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Table 2: Optimal results of 40-bar truss with ps size 20 

variables HPSO [22] GSO [22] TLBO Variables HPSO [22] GSO [22] TLBO 

A1 0.0055 0.0015 0.001 A13 0.001 0.001 0.001 

A2 0.001 0.001 0.001 A14 0.001 0.001 0.001 

A3 0.0105 0.001 0.001 A15 0.0015 0.001 0.001 

A4 0.001 0.001 0.001 A16 0.005 0.001 0.001 

A5 0.001 0.001 0.001 A17 0.004 0.0025 0.0025 

A6 0.0025 0.003 0.003 A18 0.001 0.001 0.001 

A7 0.003 0.0035 0.0035 A19 0.001 0.001 0.001 

A8 0.0245 0.0035 0.0035 y9 1.006 1.069 1.004 

A9 0.0025 0.001 0.001 Y10 2.791 2.307 2.412 

A10 0.001 0.001 0.001 Y11 3.541 2.851 2.737 

A11 0.001 0.001 0.001 Y12 3.396 3.287 3.314 

A12 0.001 0.001 0.001 Weight (kg) 3653.0103 2080.6733 2058.8055 

 

 It is observed from Table 1 that strategy with population size of 20 and 40 produced the 

best result than other strategies did, the corresponding number of iterations are 1246 and 623 

respectively. However, it is observed that the standard deviation (std. dev) is relatively large, in 

other words, the result is easy to fall into the local optimum. The increasing of population 

makes no much difference for the results. In addition, It can be seen from the mean results that 

TLBO possesses a good global search ability although it has a weak local search capacity.  

 It is obvious from Table 2 that the TLBO found the better designs than those of the HPSO 

and GSO under the same number of structural analyses. The optimum design obtained by the 

GSO is slightly heavier than the TLBO. The result of the HPSO is the worst. Figure 2 and 

Figure 3 is the convergence curves of TLBO and the optimized structure respectively. 

 

 

 

Figure 2. Convergence of TLBO with ps size 20 
Figure 3. The optimized 40-bar truss 

structure 

 

It is clear from Figure 2 that the TLBO shows better convergence capability than the HPSO 
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and GSO did at the early stage of optimization process. 

 

4.2. A 18-bar planar truss structure 

The 18-bar planar truss is shown in Figure 4. The material density is 0.1 lb/in
3
, and the 

modulus of elasticity is 10000 ksi. The stress limits of the members are subjected to ± 20 ksi. 

Euler buckling stress constraints are 
2
i

EA Li i  , where buckling coefficient α=4. Node 1, 

2, 4, 6 and 8 have -20 kips in y direction. Size variables are A1 = A4 = A8 = A12 = A16, A2 = A6 = 

A10 = A14 = A18,  A3 = A7 = A11 = A15, A5 = A9 = A13 = A17. The cross-sectional area variables 

are set [2.00, 21.75] (in
2
) and the interval is 0.25 in

2
 .Side constraints for geometry variables 

are -225 ≤ y3, y5, y7, y9 ≤ 245, 775 ≤ x3 ≤ 1225, 525 ≤ x5 ≤ 975, 275 ≤ x7 ≤ 725, 25 ≤ x9 ≤ 475 

(in). 

 

 
Figure 4. The geometry of the 18-bar planar truss 

 

 The optimal weight of 18-bar truss for different population under 30 independent runs is 

shown in Table 3. 

 
Table 3: Results of sensitivity analysis of the 18-bar truss for 30 independent runs 

PS Number of structural 

analyses averaged 

Number of best results 

for structural analyses 
Best (lb) Mean (lb) Worst (lb) std. dev 

 

20 50021 50034 4543.834 4672.787 5135.951 116.962 

30 50030 50059 4532.538 4622.168 4815.306 64.001 

40 50024 50029 4535.251 4590.072 4750.639 53.406 

50 50019 50003 4526.708 4597.752 4727.466 54.070 

 

 It is observed from Table 3 that strategy with population size of 50 and number of iterations 

of 500 produced the best result than other strategies. The standard deviation (std. dev) is 

relatively large as well, this indicates that computation is easy to trap in local optimum. 

Similarly, the increase of the population has little impact on the results when the number of 

structural analyses is about the same. Good global search ability and weak local search ability 

are also expressed. The best results of TLBO for population size 50 were selected to contrast 

with those obtained from other algorithms and were shown in Table 4. Figure 5 and Figure 6 is 

the convergence curves of TLBO and the optimized 18-bar  structure respectively. 
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Table 4: Optimal results of TLBO with ps size 50 for 18-bar truss 

Variables Rajeev [23] Hasanqehi [24] Kaveh [25] GSO [22] TLBO 

A1 12.5 12.5 13 12.25 12.5 

A2 16.25 18.25 18.25 18.25 18 

A3 8 5.5 5.5 4.75 5.25 

A4 4 3.75 3 4.25 3.75 

X3 891.9 933 913 916.9 914.524 

Y3 145.3 188 182 191.971 188.793 

X5 610.6 658 648 654.224 647.351 

Y5 118.2 148 152 156.1 149.683 

X7 385.4 422 417 423.5 416.831 

Y7 72.5 100 103 102.571 101.332 

X9 184.4 205 204 207.519 204.165 

Y9 23.4 32 39 28.579 31.662 

Weight (lb) 4616.800 4574.280 4566.210 4538.768 4526.708 

 

 

 

 

Figure 5. Convergence of TLBO with ps size 50 Figure 6. The optimized18-bar truss 

 

 TLBO has almost the same number of structural analyses with GSO. It is obvious from 

Table 4 that the result of TLBO is the best. It is obvious that the TLBO requires less 

computation effort to reach convergence and its convergence rate is faster than that of GSO. 

 

4.3. A 25-bar space truss structure (Model I) 

The 25-bar space truss is shown in Figure 7. The material density is 70.1 lb/in
3
 and the 

modulus of elasticity is 10000 ksi. The stress of members are limited to ± 40 ksi. Node 1, 2, 3, 

4, 5 and 6 are subjected to the displacement limits of ±0.35 in. The cross-sectional area 

variables set is D = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 

1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, 3.4] (in
2
). Side constraints for geometry 

variables are 20 ≤ x4 = x5 = -x3 = -x6 ≤ 60, 40 ≤ y3 = y4 = -y5 = -y6 ≤ 80, 90 ≤ z3 = z4 = z5 = z6 ≤ 

130, 40 ≤ x8 = x9 = -x7 =- x10 ≤ 80, 100 ≤ y7 = y8 = -y9 = -y10 ≤ 140 (in). Tables 5 and 6 tabulate 
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the element grouping and loading of the 25-bar space truss, respectively. 

 
Figure 7. The geometry of the 25-bar truss 

 

Table 5: Details of 25-bar truss 

Variables Members End nodes 

A1 1 (1,2) 

A2 2, 3, 4,
 (1,4), (2,3), (1,5), (2,6) 

A3 6, 7, 8, 9 (2,5), (2,4), (1,3), (1,6) 

A4 10, 11 (3,6), (4,5) 

A5 12, 13 (3,4), (5,6) 

A6 14, 15, 16, 17 (3,10), (6,7), (4,9), (5,8) 

A7 18, 19, 20, 21 (3,8), (4,7), (6,9), (5,10) 

A8 22, 23, 24, 25 (3,7), (4,8), (5,9), (6,10) 
 

 

Table 6: Load case of 25-bar spatial truss 

Node Fx Fy Fz 

 Kips 

1 1.0 -10.0 -10.0 

2 0.0 -10.0 -10.0 

3 0.5 0.0 0.0 

6 0.6 0.0 0.0 
 

 

 The optimal weight of 25-bar truss for different population under 30 independent runs is 

shown in Table 7. 

 
Table 7: Results of sensitivity analysis of 25-bar truss (Model I) for 30 independent runs 

PS 
Number of structural 

analyses averaged 

Number of best result 

for structural analyses 
Best (lb) Mean (lb) Worst (lb) std. dev 

20 50016 50012 118.852 125.079 152.404 7.199 

30 50030 50044 117.320 121.148 129.652 2.679 

40 50011 50000 117.271 120.043 126.222 1.798 

50 50007 50004 117.258 119.846 122.697 1.594 

 

 It is observed from Table 7 that strategy with population size of 50 and number of iterations 
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of 500 produced the best result than other strategies. The standard deviation is reduced and the 

result is getting better with increasing populations. The best results of TLBO for population 

size 50 were selected to contrast with those of other algorithms and were shown in Table 8. 

 Under the same number of structural analyses, the TLBO has the best performance of these 

algorithms, which is clearly expressed in Table 8. Figure 8 and Figure 9 is the convergence 

curves of TLBO and the optimal structures respectively. 

 

Table 8: Results of TLBO with ps size 50 for 25-bar truss (Model I) 

Variables Wu [26] Kaveh [25] HPSO [22] GSO [22] TLBO 

A1 0.1 0.1 0.1 0.1 0.1 

A2 0.2 0.1 0.2 0.1 0.1 

A3 1.1 1.1 1 1 1 

A4 0.2 0.1 0.1 0.1 0.1 

A5 0.3 0.1 0.1 0.1 0.1 

A6 0.1 0.1 0.1 0.1 0.1 

A7 0.2 0.1 0.1 0.2 0.1 

A8 0.9 1 1 0.9 0.9 

z1 41.070 36.230 34.084 32.149 37.657 

x2 53.470 58.560 50.650 52.742 54.496 

z2 124.600 115.590 129.978 128.230 130.000 

x6 50.800 46.460 47.838 42.401 51.887 

z6 131.480 127.950 129.584 132.603 139.521 

Weight (lb) 136.1977 124.0015 124.6025 121.3684 117.258 

 

 It is clear from Figure 8 that the TLBO performs better not only in the convergence rate but 

also in the convergence accuracy. 

 

4.4. A 25-bar space truss structure (Model II) 

Model II is extended on the basis of the model I. The Euler stress constraints were added in 

this case and the buckling coefficient is α = 12.5. The optimal weight of 25-bar truss for 

different population under 30 independent runs is shown in Table 9. 

 

Table 9: Sensitivity analysis of 25-bar truss (Model II) with independent 30 runs 

PS Number of structural 

analyses averaged 

Number of best result 

for structural analyses 
Best(lb) Mean(lb) worst(lb) 

std. 

dev  

20 50017 50020 226.0832 232.943 236.7720 5.122 

30 50026 50059 226.0832 234.543 239.8022 5.814 

40 50035 50054 226.0833 228.185 234.2589 3.437 

50 50052 50013 226.0832 229.903 232.4256 3.042 

 

Table 9 shows that TLBO get the same best solution even if the population is different, 

and the standard deviation is reduced with the increase of populations. 
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Figure 8. Convergence of TLBO for 25-

bar truss (Model I) 
Figure 9. The optimized 25-bar truss (Model I) 

 

 The best results of TLBO for population size 50 at iteration times 499 were selected to 

contrast with those of other algorithms and were shown in Table 10. 

 

Table 10. Optimal results of TLBO for 25-bar truss (Model II) with ps size 50 

Variables Wu [26] Chuang [27] HPSO [22] GSO [22] TLBO 

A1 0.9 0.1 0.5 0.1 0.1 

A2 0.8 0.9 0.9 0.9 0.9 

A3 1.3 1.2 1.1 1.2 1.2 

A4 0.5 0.1 0.1 0.1 0.1 

A5 0.3 0.2 0.2 0.2 0.2 

A6 0.6 0.3 0.4 0.3 0.3 

A7 1.2 0.9 1 0.9 0.9 

A8 1.6 1.2 1.4 1.2 1.2 

z1 22.22 20.143 20 20.758 20.143 

x2 49.01 52.235 47.526 51.878 52.235 

z2 106.98 97.152 105.186 96.777 97.152 

x6 44.6 40 40 40.005 40 

z6 102.44 100 100 100.051 100 

Weight (lb) 301.5968 226.0832 246.7083 226.1846 226.0832 

 

 It is observed from Table 10 that the result of the TLBO is as good as that of  Chuang [27] 

(PSO-SA), and is better than those of other algorithms. Figure 10 and Figure 11 is the 

convergence curves of TLBO and the optimized 25-bar trussstructure (Model II) 

respectively.Figure10 demonstrates that the convergence capability of the TLBO is better than 

the HPSO or the GSO. 
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Figure 10. Convergence of TLBO for 25-bar 

truss (Model II) 
Figure 11. Optimized 25-bar truss (Model II) 

 

 From the examples studied in this paper, it is clear that the effects of populations on 

optimal results is not so ponounced for bigger popolation size than for small one. It is worth 

mentioning that a number of numerical results show the design space of size and geometry 

optimization problem is complex and full of trapping local optima. If topology variables are 

introduced, the nonlinearity of the design space will increase. Therefore, the future research 

issues are most related with using energy and force method to improve the efficiency of the 

algorithm [28]. 

 

 

6. CONCLUSIONS 
 

In this paper, a new algorithm named teaching-learning-based optimization (TLBO) is 

introduced to solve the size and geometry optimization problem of truss structures. 

Compared with other intelligent optimization algorithms, the main characteristic of the 

TLBO is that it is an algorithm-specific parameter-less algorithm. It does not require any 

algorithm-specific parameters, only the common control parameters are needed. Within the 

examples considered, the results of TLBO obtained are as good as or better than that of 

other algorithms in terms of both convergence rate and convergence accuracy. 
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